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Endohedral metallofullerenes have attracted special interest
because of the unique properties that are unexpected for empty
fullerenes.1-3 One of the most distinct features of endohedral
metallofullerenes is that they can be viewed as consisting of a
positively charged metal core and a negatively charged carbon cage.
For example, the La atom in La@C82 donates three valence
electrons to the carbon cage, providing an open-shell electronic
structure formally described as La3+C82

3-.4,5 Consequently, the
interesting properties of endohedral metallofullerenes depend on
the structure and electronic state of the carbon cage.

It is well-known that the main isomers of M@C82 (M ) Y, La,
Ce, and Pr) show very similar UV-vis-NIR absorption spectra6-9

and redox potentials10 because of the same cage structure (C2V) and
electronic state (C82

3-). In a series of our studies on the chemical
functionalization of metallofullerenes, we have also found that the
main isomers of M@C82 (M ) Y, La, Ce, and Pr) show similar
reactivities toward 1,1,2,2-tetrakis(2,4,6-trimethylphenyl)-1,2-
disilirane (1).11-15 Recently, Dorn et al.16 have developed a new
synthetic method to afford a novel endohedral metallofullerene,
Sc3N@C80, in a high yield. This has the same carbon cage (Ih) and
electronic state (C80

6-) as La2@C80.17-20 Therefore, it may be
expected that Sc3N@C80 resembles La2@C80 in reactivity. We
herein report that the reactivity of Sc3N@C80 toward1 is different
from that of La2@C80.21

A toluene solution of Sc3N@C80 and an excess amount of1 was
photoirradiated with a halogen lamp (cut off< 400 nm) for 2 h.
Formation of the corresponding adduct was confirmed by means
of a matrix-assisted laser desorption ionization (MALDI) TOF mass
analysis by using 9-nitroantrathene as matrix and HPLC analysis
of the reaction mixture. A MALDI-TOF mass spectrum verified
the formation of the 1:1 adduct, Sc3N@C80(Mes2Si)2CH2. HPLC
profile showed that a new peak appears as the peak of Sc3N@C80

disappears. The thermal reaction was also investigated. A solution
of Sc3N@C80 and an excess amount of1 in toluene was heated at

80 °C for 2 h. A molecular ion peak of the monoadduct could not
be detected by MALDI-TOF mass measurement of the reaction
mixture. HPLC profile of the reaction mixture was unchanged.
These results reveal that Sc3N@C80 reacts only photochemically
with 1 and is in contrast with the fact that La2@C80 reacts both
photochemically and thermally with1 to afford the monoadduct.
This difference in reactivity is noticeable as the first example due
to encapsulated species.

The redox potentials of Sc3N@C80 were measured by cyclic
voltammetry (CV) and differential pulse voltammetry (DPV)22 since
they provide important information on the chemical reactivity of
endohedral metallofullerenes as well as fullerenes.10-15 The mea-
sured redox potentials of Sc3N@C80 are listed in Table 1 together
with those of La2@C80. The CV spectrum of Sc3N@C80 exhibits
one reversible oxidation and three reversible reductions. The
oxidation potential of Sc3N@C80 is similar to that of La2@C80.
However, the first reduction potential (-1.22 V) of Sc3N@C80 is
much more negative than that of La2@C80 (-0.31 V vs Fc/Fc+).
This suggests that Sc3N@C80 is much less reactive toward nucleo-
philes such as1 than is La2@C80, in accord with the fact that
Sc3N@C80 does not react thermally with1.
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Scheme 1

Table 1. Redox Potentials (V) and HOMO/LUMO Levels (eV) of
Sc3N@C80 and La2@C80

compound oxE1
redE1

redE2
redE3 HOMO LUMO

Sc3N@C80
a +0.62 -1.22 -1.59 -1.90 -5.48 -3.14

Sc3N@C80
b +0.62 -1.24 -1.62

La2@C80
c +0.56 -0.31 -1.72 -2.13 -5.40 -4.21

a Half-cell potentials unless otherwise stated. Values are relative to
ferrocene/ferrocenium couple. In 1,2-dichlorobenzene with 0.1 M (n-
Bu)4NPF6 at a Pt working electrode. Scan rate) 20 mV s-1. b Ref 22.
c Ref 18.

Figure 1. Photochemical and thermal reactions of Sc3N@C80 with 1 were
monitored by HPLC and mass spectroscopic analyses: (a and b) HPLC
profiles and (c and d) MALDI-TOF mass spectra.
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We have also carried out theoretical calculation.23 The MO
diagrams calculated for Sc3N@C80 and La2@C80 are shown in
Figure 2. Sc3N@C80 and La2@C80 have almost the same HOMO
levels. However, Sc3N@C80 has a much higher LUMO level than
La2@C80. These are consistent with the trends of the redox
potentials, supporting the poor thermal reactivity of Sc3N@C80

toward 1. As Figure 3 shows, the LUMO of Sc3N@C80 is
delocalized not only on the Sc3N cation but also on the C80 cage.
In contrast, the LUMO of La2@C80 is localized onto the two La3+

cations and is more suitable as an electron accommodation.30

In conclusion, we have found that Sc3N@C80 has a much lower
thermal reactivity toward disilirane than La2@C80, though these
two metallofullerenes have the same electronic structure described
as C80

6-. The reactivity difference is ascribed to the difference in
the energy level and spatial distribution of LUMO between
Sc3N@C80 and La2@C80. It is interesting that the difference is
caused by encapsulated species.
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Figure 2. The MO diagrams of Sc3N@C80 and La2@C80.

Figure 3. The LUMOs of (a) Sc3N@C80 and (b) La2@C80.
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